login
A280211
a(n) = n*(2^(n^2)).
1
0, 2, 32, 1536, 262144, 167772160, 412316860416, 3940649673949184, 147573952589676412928, 21760664753063325144711168, 12676506002282294014967032053760, 29243015907268149203883755326167580672, 267608942382367477698428619271780338071764992, 9727754898074489823563726246559579778829887006048256
OFFSET
0,2
COMMENTS
a(n) = n with the bits shifted to the left by n^2 places (new bits on the right hand side are zeros) i.e, a(n) = n<<(n**2).
a(n) is always even.
a(n) mod 32 = 0 for n>=2.
FORMULA
a(n) = n*(2^(n^2)).
a(n) = n*A002416(n). - Omar E. Pol, Jan 06 2017
MATHEMATICA
Table[n*2^n^2, {n, 0, 20}] (* Harvey P. Dale, Jan 01 2021 *)
PROG
(Python) a=lambda n: n<<(n**2)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Indranil Ghosh, Jan 06 2017
STATUS
approved