OFFSET
1,1
COMMENTS
Where numbers m such that 5^m - 4^m is not squarefree: numbers of the form i*a(j) for i >= 1.
Numbers m such that {k+1)^m - k^m is not squarefree, but (k+1)^d - k^d is squarefree for every proper divisor d of m:
A237043 (k = 1): 6, 20, 21, 110, 136, 155, 253, 364, 602, 657, 812, 889, 979, 1081, ... a(15) >= 1207 - Max Alekseyev, Sep 28 2015;
A280203 (k = 2): 10, 11, 42, 52, 57, 203, 272, 497, ... a(9) > 497 - Charles R Greathouse IV, Dec 27 2016;
A280208 (k = 3): 4, 14, 55, 78, 111, 253, 342, 355, ... a(9) >= 431;
this sequence (k = 4): 2, 55, 171, 183, 203, ... a(6) >= 367;
A... (k = 5): 21, 22, 39, 136, 186, 203, 244, 333, ... a(9) >= 337;
A280307 (k = 6): 20, 26, 55, 68, 171, 258, 310, ... a(8) >= 323;
A... (k = 7): 3, 10, 55, 272, ... a(5) >= 289;
A... (k = 8): 20, 21, 22, 34, 93, 116, 138, 156, 166, 205, 253, ... a(12) >= 277;
A... (k = 9): 33, 38, 42, 78, 110, 155, ... a(7) >= 263;
A... (k = 10): 6, 14, 52, 68, 253, ... a(6) >= 263;
A... (k = 11): 20, 42, 46, 53, 114, 136, 156, 205, ... a(9) >= 251.
The smallest square of 5^m - 4^m as defined above are 9, 121, 361, 3721, 841. - Robert Price, Mar 07 2017
a(6) <= 465. 465, 955, 1027 are terms. - Chai Wah Wu, Jul 20 2020
EXAMPLE
2 is in this sequence because 5^1 - 4^1 = 1 is squarefree where 1 is proper divisor of 2 and 5^2 - 4^2 = 9 = 3^2 is not squarefree.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Juri-Stepan Gerasimov, Dec 28 2016
EXTENSIONS
a(3)-a(5) from Jinyuan Wang, May 15 2020
STATUS
approved