Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #41 Jul 23 2021 07:23:03
%S 60,61,5470,5471,7115,8668,12768,16545,18805,18959,22259,23572,26399,
%T 29093,29382,30025,31120,36105,36222,46431,53221,53654,54013,56107,
%U 56629,56761,59716,66867,69531,70814,71596,73936,74180,88936,91917,106692,107809,109173
%N Positions of pandigital 10-digit numbers after the decimal point in the decimal expansion of Pi.
%C If the 3 before the decimal point is included as a digit, then the positions are in A258157.
%C From _Eduard Roure Perdices_, Jun 16 2021: (Start)
%C It is conjectured that Pi is a normal number in base 10, which would imply that this sequence is infinite.
%C In the first 10^9 decimal digits of Pi, there are 362577 permutations of {0,...,9}, and this value is close to 362880, the expected number of permutations of {0,...,9} in a list of 10^9 random integers from 0 to 9. (End)
%H Eduard Roure Perdices, <a href="/A280183/b280183.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A258157(n) - 1.
%t final = 10^5; digits = RealDigits[Pi, 10, final][[1]];
%t an = {}; init = 1; While[init + 9 <= final,
%t list = Union[Table[digits[[init + i]], {i, 0, 9}]];
%t If[Length[list] == 10, AppendTo[an, init - 1]];
%t init++;
%t ]; an (* _Eduard Roure Perdices_, Jun 16 2021 *)
%Y Cf. A000796 (Pi), A258157, A280182.
%K nonn,base
%O 1,1
%A _Bobby Jacobs_, Dec 28 2016