login
A280183
Positions of pandigital 10-digit numbers after the decimal point in the decimal expansion of Pi.
3
60, 61, 5470, 5471, 7115, 8668, 12768, 16545, 18805, 18959, 22259, 23572, 26399, 29093, 29382, 30025, 31120, 36105, 36222, 46431, 53221, 53654, 54013, 56107, 56629, 56761, 59716, 66867, 69531, 70814, 71596, 73936, 74180, 88936, 91917, 106692, 107809, 109173
OFFSET
1,1
COMMENTS
If the 3 before the decimal point is included as a digit, then the positions are in A258157.
From Eduard Roure Perdices, Jun 16 2021: (Start)
It is conjectured that Pi is a normal number in base 10, which would imply that this sequence is infinite.
In the first 10^9 decimal digits of Pi, there are 362577 permutations of {0,...,9}, and this value is close to 362880, the expected number of permutations of {0,...,9} in a list of 10^9 random integers from 0 to 9. (End)
LINKS
Eduard Roure Perdices, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A258157(n) - 1.
MATHEMATICA
final = 10^5; digits = RealDigits[Pi, 10, final][[1]];
an = {}; init = 1; While[init + 9 <= final,
list = Union[Table[digits[[init + i]], {i, 0, 9}]];
If[Length[list] == 10, AppendTo[an, init - 1]];
init++;
]; an (* Eduard Roure Perdices, Jun 16 2021 *)
CROSSREFS
Cf. A000796 (Pi), A258157, A280182.
Sequence in context: A247437 A266916 A256749 * A181463 A114559 A175102
KEYWORD
nonn,base
AUTHOR
Bobby Jacobs, Dec 28 2016
STATUS
approved