%I #4 Dec 28 2016 07:00:36
%S 3,41,279,1633,8759,43094,202693,919058,4057457,17554353,74755040,
%T 314269010,1307053311,5386675841,22025521567,89442385391,361014889345,
%U 1449314491017,5790282988659,23032601187928,91257530191537
%N Number of nX4 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
%C Column 4 of A280180.
%H R. H. Hardin, <a href="/A280176/b280176.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 12*a(n-1) -36*a(n-2) -95*a(n-3) +636*a(n-4) -114*a(n-5) -4112*a(n-6) +3501*a(n-7) +15858*a(n-8) -14979*a(n-9) -50898*a(n-10) +32472*a(n-11) +155801*a(n-12) -45672*a(n-13) -392154*a(n-14) +6334*a(n-15) +749964*a(n-16) +263487*a(n-17) -1160906*a(n-18) -865320*a(n-19) +1407168*a(n-20) +1507520*a(n-21) -1000752*a(n-22) -1913922*a(n-23) +131582*a(n-24) +1715757*a(n-25) +370377*a(n-26) -692041*a(n-27) -487062*a(n-28) -59226*a(n-29) +231552*a(n-30) +194424*a(n-31) -19149*a(n-32) -65094*a(n-33) -26457*a(n-34) -891*a(n-35) +9182*a(n-36) +4908*a(n-37) -726*a(n-38) -746*a(n-39) -222*a(n-40) -24*a(n-41) +60*a(n-42) +12*a(n-43) -9*a(n-44) +a(n-45) for n>54
%e Some solutions for n=4
%e ..0..1..1..1. .0..0..0..0. .0..1..1..1. .0..0..1..1. .0..1..1..0
%e ..0..1..1..0. .0..0..0..0. .0..1..1..1. .0..1..1..0. .0..1..0..0
%e ..0..1..1..1. .1..1..0..1. .0..0..0..0. .1..0..1..0. .0..0..0..0
%e ..0..0..1..1. .1..1..0..1. .1..0..0..1. .1..1..1..0. .0..1..0..0
%Y Cf. A280180.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 28 2016