login
A280095
Engel expansion of phi to the base Pi.
1
2, 105, 617, 3077, 9757, 71731, 306407, 2071853, 10770894, 185768753, 1672941615, 14465494561, 338610760068, 1260607468485, 5168248479349, 151720540392580, 1384591426590643, 30464122079618738, 121074568909128689, 574695040334652831
OFFSET
0,1
COMMENTS
The Mathematica code provided calculates (1+ sqrt(5))/4 and yields the Engel expansion (1+sqrt(5))/4 = Pi/4 + Pi^2/(4*105) + O(Pi^6). Multiplying this expansion by 2 gives this sequence.
LINKS
Eric Weisstein's World of Mathematics, Pierce Expansion
Wikipedia, Engel Expansion
EXAMPLE
phi = Pi/2 + Pi^2/(2*105) + Pi^3/(2*105*617) + ...
MATHEMATICA
EngelExp[A_, n_] := Join[Array[Pi &, Floor[A]], First@Transpose@
NestList[{Ceiling[Pi/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/Pi} &, {Ceiling[Pi/(A - Floor[A])], (A - Floor[A])/Pi}, n - 1]]; EngelExp[N[(1 + Sqrt[5])/4, 7!], 20]
CROSSREFS
Cf. A232325.
Sequence in context: A042351 A258828 A156880 * A229016 A222840 A356723
KEYWORD
nonn
AUTHOR
G. C. Greubel, Dec 25 2016
STATUS
approved