login
A280036
Numerators of fractions converging to limiting value of Galois polynomials.
3
1, 4, 11, 92, 15481, 411913, 2482927, 4181926481, 10431687390203, 1562251141547683, 8527085144590567, 29905005221325235087, 563972987813159419491869, 245998831704214345304467561, 786438313703834134845784743061, 493123210279233679062515691019
OFFSET
1,2
LINKS
Christian Günther, Kai-Uwe Schmidt, L^q norms of Fekete and related polynomials, arXiv:1602.01750 [math.NT], 2016.
EXAMPLE
1/1, 4/3, 11/5, 92/21, 15481/1512, 411913/15120, 2482927/30888, 4181926481/16216200, ...
MATHEMATICA
(* "gen" stands for "generalized Eulerian number" *)
gen[n_, x_] := Sum[(-1)^j Binomial[n + 1, j] (x + 1 - j)^n, {j, 0, Floor[x + 1]}];
c[k_] := c[k] = 1 - Sum[Binomial[k, j] Binomial[k - 1, j - 1] c[j], {j, 1, k - 1}];
G[0, 0] = 1; G[k_, m_] /; 1 <= m <= 2 k - 1 := G[k, m] = Sum[Binomial[k, j] Binomial[k - 1, j - 1] c[j]/(2 j - 1)! Sum[gen[2 j - 1, i - 1] G[k - j, m - i], {i, 0, m}], {j, 1, k}]; G[_, _] = 0;
Table[G[k, k] // Numerator, {k, 1, 16}] (* Jean-François Alcover, Sep 06 2018 *)
CROSSREFS
Cf. A280037. Related to central column of array in A280040.
Sequence in context: A320289 A298858 A181267 * A125888 A266894 A296617
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Dec 28 2016
EXTENSIONS
a(9) and beyond from Lars Blomberg, Jul 07 2017
STATUS
approved