%I #23 Jul 25 2019 04:35:48
%S 1,1,3,7,27,211,1743,15247,219747,5379451,154297863,5085738967,
%T 225515577147,14272681411171
%N Number of maximal triangle-free labeled graphs on n vertices.
%H József Balogh, Šárka Petříčková, <a href="https://arxiv.org/abs/1409.8123">The number of the maximal triangle-free graphs</a>, Bull. London Math. Soc., 46 (2014), 1003-1006.
%H F. Hüffner, <a href="https://github.com/falk-hueffner/tinygraph">tinygraph</a>, software for generating integer sequences based on graph properties.
%e For n = 1 the only graph is the graph with one node and no edges. For n = 2 the only graph is the complete graph K_2. For n = 3 the maximal triangle-free graphs are isomorphic to the complete bipartite graph K_{2,1}.
%Y Cf. A000514.
%Y Cf. A216783 (unlabeled graphs).
%K nonn,more
%O 1,3
%A _Roland Hildebrand_, Feb 22 2017
%E a(11)-a(14) added using tinygraph by _Falk Hüffner_, Jul 24 2019