

A280015


a(n) is the least k such that A056619(k) = prime(n).


0



1, 2, 12, 10, 6, 76, 114, 34, 120, 246, 1386, 616, 1126, 3774, 510, 8220, 2634, 25810, 57936, 46836, 12180, 254940, 54574, 80040, 497146, 801780, 402324, 1003744, 6441196, 2858890, 27821214, 14312640, 47848164, 25049814, 8454126, 45433894, 4262890
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n) is the least number that is a primitive root mod prime(n) but not mod any lower prime.
Using the Chinese Remainder Theorem, it is easy to show that such k always exists.


LINKS

Table of n, a(n) for n=1..37.


EXAMPLE

10 is a primitive root mod prime(4) = 7, but not mod 2, 3 or 5. This is the least number with that property, so a(4)=10.


MAPLE

a[1]:= 1: a[2]:= 2: p:= 3:
Cands:= {4, seq(seq(6*i+j, j=[0, 4]), i=1..10^7)}:
for n from 3 while Cands <> {} do
p:= nextprime(p);
r:= numtheory:primroot(p);
s:= select(t > igcd(t, p1)=1, {$1..p1});
q:= map(t > r &^t mod p, s);
R, Cands:= selectremove(t > member(t mod p, q), Cands):
if R = {} then break fi;
a[n]:= min(R);
od:
seq(a[i], i=1..n1);


CROSSREFS

Cf. A056619.
Sequence in context: A166544 A081468 A216349 * A245281 A308215 A216478
Adjacent sequences: A280012 A280013 A280014 * A280016 A280017 A280018


KEYWORD

nonn


AUTHOR

Robert Israel, Feb 21 2017


STATUS

approved



