login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279947 Expansion of f(x^2, x^2) * f(-x, -x^5) in powers of x where f(, ) is Ramanujan's general theta function. 1
1, -1, 2, -2, 0, -1, 0, -2, 3, -2, 2, 0, 0, -2, 0, 0, 3, 0, 4, -2, 0, -1, 0, -4, 2, 0, 2, 0, 0, -2, 0, 0, 2, -3, 2, -2, 0, -2, 0, -2, 3, -2, 2, 0, 0, 0, 0, 0, 4, 0, 2, -4, 0, -2, 0, -2, 1, 0, 6, 0, 0, 0, 0, 0, 2, -3, 2, -2, 0, 0, 0, -2, 4, -4, 2, 0, 0, -2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of chi(-x) * phi(x^2) * psi(x^3) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Expansion of q^(-1/3) * eta(q) * eta(q^4)^5 * eta(q^6)^2 / (eta(q^2)^3 * eta(q^3) * eta(q^8)^2) in powers of q.

Euler transform of period 24 sequence [ -1, 2, 0, -3, -1, 1, -1, -1, 0, 2, -1, -4, -1, 2, 0, -1, -1, 1, -1, -3, 0, 2, -1, -2, ...].

a(n) = b(3*n + 1) where b() is multiplicative with b(2^e) = -(-1)^e if e>0, b(3^e) = (-1)^e, b(p^e) = e+1 if p == 1, 7 (mod 24), b(p^e) = (e+1) * (-1)^e if p == 5, 11 (mod 24), b(p^e) = (1 + (-1)^e) / 2 if p == 13, 17, 19, 23 (mod 24).

a(n) = (-1)^n * A263571(n) = A128581(3*n + 1) = - A190611(3*n + 1) = - A261122(6*n + 2).

a(2*n) = A261115(n).

a(2*n + 1) = - A263548(n).

a(8*n + 4) = a(8*n + 6) = 0.

a(4*n + 1) = -a(n).

a(4*n + 3) = -2 * A128582(n).

a(8*n) = A113780(n).

a(8*n + 2) = 2 * A260089(n).

a(16*n + 3) = -2 * A128583(n).

a(16*n + 7) = -2 * A128591(n).

EXAMPLE

G.f. = 1 - x + 2*x^2 - 2*x^3 - x^5 - 2*x^7 + 3*x^8 - 2*x^9 + 2*x^10 + ...

G.f. = q - q^4 + 2*q^7 - 2*q^10 - q^16 - 2*q^22 + 3*q^25 - 2*q^28 + ...

MATHEMATICA

a[ n_] := If[ n < 0, 0, With[ {m = 3 n + 1}, (-1)^n DivisorSum[ m, KroneckerSymbol[ 2, #] KroneckerSymbol[ -3, m/#] &]]];

a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^2] QPochhammer[ x^6] QPochhammer[ x, x^6] QPochhammer[ x^5, x^6], {x, 0, n}];

PROG

(PARI) {a(n) = my(m); if( n<0, 0, m = 3*n + 1; (-1)^n * sumdiv( m, d, kronecker( 2, d) * kronecker( -3, m/d)))};

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^5 * eta(x^6 + A)^2 / (eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^8 + A)^2), n))};

(PARI) {a(n) = my(A, p, e); if( n<0, 0, A = factor(3*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, -(-1)^e, p==3, (-1)^e, p%24==1 || p%24==7, e+1, p%24==5 || p%24==11, (e+1)*(-1)^e, !(e%2))))};

CROSSREFS

Cf. A113780, A128581, A128582, A128583, A128591, A190611, A260089, A261115, A261122, A263548, A263571.

Sequence in context: A039651 A264403 A038190 * A263571 A251690 A187752

Adjacent sequences:  A279944 A279945 A279946 * A279948 A279949 A279950

KEYWORD

sign

AUTHOR

Michael Somos, Dec 23 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 24 20:34 EST 2020. Contains 338616 sequences. (Running on oeis4.)