The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279945 Irregular triangular array: t(n,k) = number of partitions of n having lexicographic difference set of size k; see Comments. 11
 1, 1, 1, 1, 2, 1, 3, 1, 1, 3, 3, 1, 6, 4, 1, 4, 10, 1, 6, 14, 1, 1, 8, 17, 4, 1, 8, 27, 6, 1, 6, 36, 13, 1, 13, 42, 21, 1, 7, 58, 35, 1, 10, 72, 52, 1, 15, 75, 84, 1, 1, 12, 106, 107, 5, 1, 9, 119, 159, 9, 1, 19, 142, 204, 19, 1, 10, 164, 283, 32, 1, 16, 199 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS A partition P = [p(1), p(2), ..., p(k)] with p(1) >= p(2) >= ... >= p(k) has lexicographic difference set {0} union {|p(i) - p(i-1)|: 2 <= i <= k}. Column 2 is A049990, and the n-th row sum is A000041(n). LINKS Clark Kimberling, Table of n, a(n) for n = 1..100 EXAMPLE First 20 rows of array: 1 1    1 1    2 1    3    1 1    3    3 1    6    4 1    4    10 1    6    14    1 1    8    17    4 1    8    27    6 1    6    36    13 1    13   42    21 1    7    58    35 1    10   72    52 1    15   75    84    1 1    12   106   107   5 1    9    119   159   9 1    19   142   204   19 1    10   164   283   32 1    16   199   360   51 Row 5: the 7 partitions of 5 are shown here with difference sets: partition  difference set     size [5]          null              0 [4,1]        {3}               1 [3,2]        {1}               1 [3,1,1]      {0,2}             2 [2,2,1]      {0,1}             2 [2,1,1,1]    {0,1}             2 [1,1,1,1]    {0}               1 Row 5 of the array is 1 3 3, these being the number of 0's, 1's, 2's in the "size" column. MATHEMATICA p[n_] := IntegerPartitions[n]; z = 20; t[n_, k_] := Length[DeleteDuplicates[Abs[Differences[p[n][[k]]]]]]; u[n_] := Table[t[n, k], {k, 1, PartitionsP[n]}]; v = Table[Count[u[n], h], {n, 1, z}, {h, 0, Max[u[n]]}] TableForm[v] (* A279945 array *) Flatten[v]   (* A279945 sequence *) CROSSREFS Cf. A000041, A049990. Sequence in context: A244740 A088742 A256435 * A300322 A144220 A156826 Adjacent sequences:  A279942 A279943 A279944 * A279946 A279947 A279948 KEYWORD nonn,easy AUTHOR Clark Kimberling, Dec 26 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 6 08:06 EDT 2020. Contains 333267 sequences. (Running on oeis4.)