This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279927 Expansion of e.g.f. arctan(x)*exp(x). 4
 0, 1, 2, 1, -4, 9, 110, -279, -4520, 17265, 322618, -1638031, -35226860, 223578809, 5463436134, -41639195623, -1142009233872, 10162622387809, 309463272791538, -3149754003442847, -105510576441518164, 1208991988527548137, 44200537412519181278, -563099647603189449783 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Stanislav Sykora, Table of n, a(n) for n = 0..199 FORMULA From Emanuele Munarini, Dec 16 2017: (Start) a(n) = Sum_{k=0..n/2} binomial(n+1,2*k+1)*(-1)^k*((n-2*k)/(n+1))*(2k)!. a(n+3) - a(n+2) + (n+1)*(n+2)*a(n+1) - (n+1)*(n+2)*a(n) = 1. a(n+4) - 2*a(n+3) + (n^2+5*n+7)*a(n+2) - 2*(n+2)^2*a(n+1) + (n+1)*(n+2)*a(n) = 0. (End) a(n) ~ (n-1)! * sin(Pi*n/2-1). - Vaclav Kotesovec, Dec 17 2017 EXAMPLE atan(x)*exp(x) = x + 2*x^2/2! + x^3/3! - 4*x^4/4! + 9*x^5/5! + ... MATHEMATICA CoefficientList[Series[Exp[x] ArcTan[x], {x, 0, 12}], x] Range[0, 12]! Table[Sum[Binomial[n+1, 2k+1] (-1)^k (n-2k)/(n+1) (2k)!, {k, 0, n/2}], {n, 0, 12}] (* Emanuele Munarini, Dec 16 2017 *) PROG (PARI) x='x+O('x^33); concat([0], Vec(serlaplace(atan(x)*exp(x) ) ) ) \\ Joerg Arndt, Jan 06 2017 (Maxima) makelist(sum((-1)^k*binomial(n+1, 2*k+1)*(n-2*k)/(n+1)*(2*k)!, k, 0, floor(n/2)), n, 0, 12); /* Emanuele Munarini, Dec 16 2017 */ CROSSREFS E.g.f. of exp(x) A000012, -arctan(x) A186246. Sequence in context: A097949 A268572 A117338 * A137634 A100229 A071949 Adjacent sequences:  A279924 A279925 A279926 * A279928 A279929 A279930 KEYWORD sign AUTHOR Stanislav Sykora, Jan 06 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 18 20:06 EST 2018. Contains 318245 sequences. (Running on oeis4.)