%I
%S 1,2,3,4,3,4,1,2,4,3,2,1,2,1,4,3,1,2,3,4,4,3,2,1,2,1,4,3,3,4,1,2,1,2,
%T 4,3,3,4,2,1,2,1,3,4,4,3,1,2,1,2,4,3,4,3,1,2,3,4,2,1,2,1,3,4,1,3,2,4,
%U 2,4,1,3,4,2,3,1,3,1,4,2,1,3,2,4,4,2,3,1,3,1,4,2,2,4,1,3
%N Rows of the 48 selforthogonal Latin squares of order 4, lexicographically sorted.
%C An m X m Latin square consists of m sets of the numbers 1 to m arranged in such a way that no row or column contains the same number twice.
%C Two m X m Latin squares are orthogonal if no pair of corresponding elements occurs more than once.
%C A selforthogonal Latin square is a Latin square that is orthogonal to its transpose.
%H Colin Barker, <a href="/A279849/b279849.txt">Table of n, a(n) for n = 1..768</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LatinSquare.html">Latin square</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Latin_square">Latin square</a>
%e The first few squares are:
%e 1 2 3 4 1 2 3 4 1 2 4 3 1 2 4 3 1 3 2 4 1 3 2 4 1 3 4 2
%e 3 4 1 2 4 3 2 1 3 4 2 1 4 3 1 2 2 4 1 3 4 2 3 1 2 4 3 1
%e 4 3 2 1 2 1 4 3 2 1 3 4 3 4 2 1 4 2 3 1 3 1 4 2 3 1 2 4
%e 2 1 4 3 3 4 1 2 4 3 1 2 2 1 3 4 3 1 4 2 2 4 1 3 4 2 1 3
%Y Cf. A160368, A279648, A279649, A279650, A279850.
%K nonn,fini,full,tabf
%O 1,2
%A _Colin Barker_, Dec 20 2016
