OFFSET
1,2
COMMENTS
An m X m Latin square consists of m sets of the numbers 1 to m arranged in such a way that no row or column contains the same number twice.
Two m X m Latin squares are orthogonal if no pair of corresponding elements occurs more than once.
A self-orthogonal Latin square is a Latin square that is orthogonal to its transpose.
LINKS
Colin Barker, Table of n, a(n) for n = 1..768
Eric Weisstein's World of Mathematics, Latin square
Wikipedia, Latin square
EXAMPLE
The first few squares are:
1 2 3 4 1 2 3 4 1 2 4 3 1 2 4 3 1 3 2 4 1 3 2 4 1 3 4 2
3 4 1 2 4 3 2 1 3 4 2 1 4 3 1 2 2 4 1 3 4 2 3 1 2 4 3 1
4 3 2 1 2 1 4 3 2 1 3 4 3 4 2 1 4 2 3 1 3 1 4 2 3 1 2 4
2 1 4 3 3 4 1 2 4 3 1 2 2 1 3 4 3 1 4 2 2 4 1 3 4 2 1 3
CROSSREFS
KEYWORD
nonn,fini,full,tabf
AUTHOR
Colin Barker, Dec 20 2016
STATUS
approved