login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279817 a(1) = -1; for n>1, Sum_{d|n} a(n-d+1) = 0. 0
-1, 1, 1, 0, 1, 0, 1, -1, 0, 1, 1, -2, 1, 1, -1, 1, 1, -3, 1, -3, 1, 2, 1, -6, 0, 0, 0, 0, 1, -2, 1, -2, -1, 5, -1, -4, 1, 3, 0, 3, 1, -3, 1, -7, -3, 10, 1, -9, 0, -10, 2, -4, 1, -7, 2, 6, -1, 4, 1, -25, 1, 2, -2, 4, -1, -11, 1, 6, -1, 13, 1, -20, 1, -3, -4, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,12

LINKS

Table of n, a(n) for n=1..76.

FORMULA

For primes p and q:

a(p) = 1.

If p^2 - p + 1 is prime then a(p^2) = 0.

If p*q - p + 1 and p*q - q + 1 are primes then a(p*q) = -1.

EXAMPLE

When n is any prime p, we have Sum_{d|p} a(p-d+1) = 0, so a(p-1+1) + a(p-p+1) = 0, hence a(p)=1.

For n=4, we have a(4-1+1) + a(4-2+1) + a(4-4+1) = 0, so a(4) + a(3) + a(1) = 0, hence a(4)=0.

MAPLE

a := proc (n) option remember; -add(a(n-d+1), d = `minus`(numtheory:-divisors(n), {1})) end proc; a(1) := -1; seq(simplify(a(i)), i = 1 .. 1000)

CROSSREFS

Sequence in context: A323163 A322318 A014649 * A253642 A070084 A268372

Adjacent sequences:  A279814 A279815 A279816 * A279818 A279819 A279820

KEYWORD

sign

AUTHOR

Gevorg Hmayakyan, Dec 19 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 07:12 EDT 2019. Contains 321468 sequences. (Running on oeis4.)