login
A279801
Number of nX2 0..2 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
4
0, 2, 22, 196, 1848, 16720, 149392, 1317720, 11508016, 99674848, 857347424, 7330950944, 62366312416, 528216075200, 4456342509184, 37466616823680, 314030294836992, 2624804780948864, 21884570459044608, 182051987035756544
OFFSET
1,2
COMMENTS
Column 2 of A279805.
LINKS
FORMULA
Empirical: a(n) = 16*a(n-1) -64*a(n-2) -8*a(n-3) +72*a(n-4) -88*a(n-5) +144*a(n-6) +288*a(n-7) -112*a(n-8) -32*a(n-9) -16*a(n-10) -384*a(n-11) -256*a(n-12)
EXAMPLE
Some solutions for n=4
..0..0. .0..0. .0..1. .0..1. .0..0. .0..1. .0..0. .0..1. .0..1. .0..1
..1..1. .1..1. .1..1. .1..1. .1..0. .0..0. .1..0. .1..1. .2..1. .2..0
..2..2. .1..0. .2..0. .0..2. .2..2. .0..2. .2..0. .2..2. .2..0. .1..1
..2..1. .1..0. .0..2. .1..0. .0..0. .2..1. .1..1. .1..2. .2..2. .1..2
CROSSREFS
Cf. A279805.
Sequence in context: A000184 A007613 A346796 * A043037 A058441 A255043
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 19 2016
STATUS
approved