This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279759 Expansion of Product_{k>=1} 1/(1 - x^(k*(3*k-1)*(3*k-2)/2)). 2
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,21 COMMENTS Number of partitions of n into nonzero dodecahedral numbers (A006566). LINKS M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] OEIS Wiki, Platonic numbers FORMULA G.f.: Product_{k>=1} 1/(1 - x^(k*(3*k-1)*(3*k-2)/2)). EXAMPLE a(21) = 2 because we have [20, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. MATHEMATICA nmax=120; CoefficientList[Series[Product[1/(1 - x^(k (3 k - 1) (3 k - 2)/2)), {k, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A003108, A006566, A068980, A279757, A279758. Sequence in context: A037203 A032556 A110592 * A185714 A168353 A053230 Adjacent sequences:  A279756 A279757 A279758 * A279760 A279761 A279762 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Dec 18 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 08:47 EDT 2019. Contains 328292 sequences. (Running on oeis4.)