login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279759 Expansion of Product_{k>=1} 1/(1 - x^(k*(3*k-1)*(3*k-2)/2)). 2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,21

COMMENTS

Number of partitions of n into nonzero dodecahedral numbers (A006566).

LINKS

Table of n, a(n) for n=0..120.

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

OEIS Wiki, Platonic numbers

Index entries for related partition-counting sequences

FORMULA

G.f.: Product_{k>=1} 1/(1 - x^(k*(3*k-1)*(3*k-2)/2)).

EXAMPLE

a(21) = 2 because we have [20, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

MATHEMATICA

nmax=120; CoefficientList[Series[Product[1/(1 - x^(k (3 k - 1) (3 k - 2)/2)), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A003108, A006566, A068980, A279757, A279758.

Sequence in context: A037203 A032556 A110592 * A185714 A168353 A053230

Adjacent sequences:  A279756 A279757 A279758 * A279760 A279761 A279762

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Dec 18 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 08:47 EDT 2019. Contains 328292 sequences. (Running on oeis4.)