%I #4 Dec 18 2016 07:47:15
%S 0,26,168,736,2948,11434,42494,154886,554894,1962216,6863344,23793932,
%T 81876322,279975202,952219158,3223476464,10867630142,36506995228,
%U 122242241376,408146874402,1359207500258,4515810568242,14971262615738
%N Number of 4Xn 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
%C Row 4 of A279741.
%H R. H. Hardin, <a href="/A279744/b279744.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 15*a(n-1) -97*a(n-2) +349*a(n-3) -719*a(n-4) +605*a(n-5) +988*a(n-6) -3940*a(n-7) +5528*a(n-8) -2372*a(n-9) -4242*a(n-10) +7466*a(n-11) -4480*a(n-12) +4508*a(n-13) -15704*a(n-14) +23204*a(n-15) -1380*a(n-16) -40516*a(n-17) +52888*a(n-18) -15504*a(n-19) -18615*a(n-20) -715*a(n-21) +29269*a(n-22) +10487*a(n-23) -77888*a(n-24) +64000*a(n-25) +15211*a(n-26) -48111*a(n-27) +12999*a(n-28) +903*a(n-29) +8726*a(n-30) +4570*a(n-31) -4063*a(n-32) -1491*a(n-33) -2565*a(n-34) -131*a(n-35) +130*a(n-36) +110*a(n-37) +293*a(n-38) +115*a(n-39) +104*a(n-40) +40*a(n-41) +17*a(n-42) +7*a(n-43) +a(n-44) +a(n-45) for n>50
%e Some solutions for n=4
%e ..0..0..1..1. .0..1..1..0. .0..1..0..1. .0..0..1..0. .0..1..0..1
%e ..1..0..0..0. .1..0..1..1. .1..0..1..0. .1..0..1..0. .1..1..0..1
%e ..1..1..1..0. .0..1..0..0. .1..1..1..1. .1..0..1..0. .0..0..1..0
%e ..0..1..0..1. .1..0..1..0. .1..0..0..1. .0..1..0..1. .1..0..1..0
%Y Cf. A279741.
%K nonn
%O 1,2
%A _R. H. Hardin_, Dec 18 2016