login
A279742
Number of 2 X n 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1
0, 2, 6, 14, 26, 48, 84, 146, 250, 426, 722, 1220, 2056, 3458, 5806, 9734, 16298, 27256, 45532, 75986, 126690, 211042, 351266, 584204, 970896, 1612418, 2676054, 4438526, 7357370, 12188736, 20181732, 33398930, 55244746, 91336218, 150937586
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5).
Empirical g.f.: 2*x^2*(1 - x^2 - 2*x^3) / ((1 - x)*(1 - x - x^2)^2). - Colin Barker, Feb 11 2019
EXAMPLE
Some solutions for n=4:
..0..0..1..0. .0..1..0..0. .0..1..1..0. .0..1..1..0. .0..1..1..0
..1..0..1..0. .1..0..1..0. .0..0..1..1. .0..1..0..1. .1..0..1..0
CROSSREFS
Row 2 of A279741.
Sequence in context: A162716 A138318 A212964 * A068042 A068041 A182155
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 18 2016
STATUS
approved