%I #4 Dec 18 2016 07:43:11
%S 8,48,746,11434,167904,2407152,33954530,472691878,6511502806,
%T 88926626284,1205703682142,16247311565782,217785573891544,
%U 2905922099529922,38618121561891188,511391035788735602,6750548575431539154
%N Number of nX6 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
%C Column 6 of A279741.
%H R. H. Hardin, <a href="/A279739/b279739.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A279739/a279739.txt">Empirical recurrence of order 64</a>
%F Empirical recurrence of order 64 (see link above)
%e Some solutions for n=4
%e ..0..1..0..0..1..1. .0..1..0..1..0..1. .0..1..0..1..0..1. .0..1..0..0..1..1
%e ..0..1..1..0..0..1. .0..1..0..1..0..1. .1..1..0..0..1..0. .0..0..1..0..0..1
%e ..0..1..0..1..0..0. .0..1..1..0..0..1. .0..0..1..0..0..1. .1..1..0..0..1..0
%e ..1..0..1..0..1..1. .0..0..1..1..0..0. .1..0..1..1..0..1. .0..1..1..0..1..0
%Y Cf. A279741.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 18 2016