login
A279632
Coefficients in the expansion of ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = e - 1, s = r/(1-r).
1
2, -2, 3, -2, -2, 8, -14, 17, -12, -5, 34, -68, 91, -80, 11, 126, -308, 467, -488, 235, 382, -1316, 2291, -2760, 1995, 638, -5220, 10738, -14725, 13447, -3007, -18467, 47914, -74806, 80821, -43890, -51936, 201548, -363193, 450980, -347117, -55972, 782359
OFFSET
0,1
LINKS
FORMULA
G.f.: ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(2), s = r/(1-r).
MATHEMATICA
z = 100;
r = E - 1; f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}];
s = r/(r - 1); g[x_] := g[x] = Sum[Floor[s*(k + 1)] x^k, {k, 0, z}]
CoefficientList[Series[g[x]/f[x], {x, 0, z}], x]
CROSSREFS
Sequence in context: A225637 A185268 A279630 * A363680 A300817 A341417
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Dec 18 2016
STATUS
approved