login
A279608
Beatty sequence for e/(e - 2); i.e., a(n) = floor(n*e/(e - 2)).
3
3, 7, 11, 15, 18, 22, 26, 30, 34, 37, 41, 45, 49, 52, 56, 60, 64, 68, 71, 75, 79, 83, 87, 90, 94, 98, 102, 105, 109, 113, 117, 121, 124, 128, 132, 136, 140, 143, 147, 151, 155, 158, 162, 166, 170, 174, 177, 181, 185, 189, 193, 196, 200, 204, 208, 211, 215
OFFSET
1,1
COMMENTS
The complement is A279607, the Beatty sequence for e/2.
LINKS
MATHEMATICA
r = E/2; s = r/(r - 1); z = 10000;
Table[Floor[n*r], {n, 1, z}] ; (* A279607 *)
Table[Floor[n*s], {n, 1, z}] ; (* A279608 *)
PROG
(PARI) e = exp(1);
for(n=1, 100, print1(floor(n*e/(e - 2)), ", ")) \\ Indranil Ghosh, Mar 30 2017
(Python)
import math
from mpmath import*
mp.dps=100
print([int(math.floor(n*e/(e - 2))) for n in range(1, 101)]) # Indranil Ghosh, Mar 30 2017
CROSSREFS
Cf. A279607.
Sequence in context: A373415 A145832 A292637 * A322408 A124981 A249244
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 16 2016
STATUS
approved