login
Beatty sequence for e/2; i.e., a(n) = floor(n*e/2).
9

%I #18 Mar 28 2021 07:00:51

%S 1,2,4,5,6,8,9,10,12,13,14,16,17,19,20,21,23,24,25,27,28,29,31,32,33,

%T 35,36,38,39,40,42,43,44,46,47,48,50,51,53,54,55,57,58,59,61,62,63,65,

%U 66,67,69,70,72,73,74,76,77,78,80,81,82,84,85,86,88,89

%N Beatty sequence for e/2; i.e., a(n) = floor(n*e/2).

%C The complement is A279608, the Beatty sequence for e/(e - 2).

%H Clark Kimberling, <a href="/A279607/b279607.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>

%t r = E/2; s = r/(r - 1); z = 10000;

%t Table[Floor[n*r], {n, 1, z}] ;(* A279607 *)

%t Table[Floor[n*s], {n, 1, z}] ;(* A279608 *)

%o (PARI) e = exp(1);

%o for(n=1, 100, print1(floor(n*e/2),", ")) \\ _Indranil Ghosh_, Mar 30 2017

%o (Python)

%o import math

%o from mpmath import mp

%o mp.dps=100

%o print([int(math.floor(n*e/2)) for n in range(1, 101)]) # _Indranil Ghosh_, Mar 30 2017

%Y Cf. A019739 (e/2), A279608.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Dec 16 2016