The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279560 Number of length n inversion sequences avoiding the patterns 100, 210, 201, and 102. 23
 1, 1, 2, 6, 21, 76, 277, 1016, 3756, 13998, 52554, 198568, 754316, 2878552, 11027384, 42384412, 163372325, 631290168, 2444700421, 9485463044, 36866810877, 143508889270, 559399074443, 2183269032876, 8530724152279, 33366805383326, 130633854520329, 511889287682280 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j and e_i <> e_k. This is the same as the set of length n inversion sequences avoiding 100, 210, 201, and 102. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1665 Megan A. Martinez, Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016. FORMULA a(n) = binomial(2n-2,n-1) + Sum_{k=2..n-2} Sum_{i=1..k-1} Sum_{u=1..i} Sum_{d=0..u-1} ((i-d+1)/(i+1)*binomial(i+d,d)) for n>0, a(0)=1. EXAMPLE The length 4 inversion sequences avoiding (100, 210, 201, 102) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123. MAPLE a:= proc(n) option remember; `if`(n<4, n!,      ((6*(9*n^4-61*n^3+100*n^2+52*n-140))*a(n-1)      -(3*(3*n-8))*(9*n^3-38*n^2+3*n+70)*a(n-2)      +(2*(2*n-7))*(9*n^3-31*n^2-2*n+60)*a(n-3))       / ((9*n^3-58*n^2+87*n+22)*n))     end: seq(a(n), n=0..30);  # Alois P. Heinz, Feb 24 2017 MATHEMATICA a[0] = 1; a[n_] := Binomial[2n-2, n-1] + Sum[(4i Binomial[2i+1, i+1]) / ((i+2)(i+3)), {k, 2, n-2}, {i, 1, k-1}]; Array[a, 30, 0] (* Jean-François Alcover, Nov 06 2017 *) PROG (PARI) a(n) = if (n==0, 1, binomial(2*n-2, n-1) + sum(k=2, n-2, sum(i=1, k-1, sum(u=1, i, sum(d=0, u-1, ((i-d+1)/(i+1)*binomial(i+d, d))))))); \\ Michel Marcus, Jan 18 2017 CROSSREFS Cf. A000108, A263777, A263778, A263779, A263780, A279551, A279552, A279553, A279554, A279555, A279556, A279557, A279558, A279559, A279561, A279562, A279563, A279564, A279565, A279566, A279567, A279568, A279569, A279570, A279571, A279572, A279573. Sequence in context: A112091 A108146 A116798 * A116821 A116772 A131792 Adjacent sequences:  A279557 A279558 A279559 * A279561 A279562 A279563 KEYWORD nonn AUTHOR Megan A. Martinez, Jan 17 2017 EXTENSIONS More terms from Michel Marcus, Jan 18 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 20:32 EST 2020. Contains 332111 sequences. (Running on oeis4.)