The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279553 Number of length n inversion sequences avoiding the patterns 110, 210, 120, 201, and 010. 23
 1, 1, 2, 5, 15, 50, 178, 663, 2552, 10071, 40528, 165682, 686151, 2872576, 12137278, 51690255, 221657999, 956265050, 4147533262, 18074429421, 79102157060, 347519074010, 1532070899412, 6775687911920, 30052744139440, 133649573395725, 595816470717728 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_k and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 010, 110, 120, 201, and 210. It can be shown that this sequence also counts the length n inversion sequences with no entries e_i, e_j, e_k (where i e_j and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 010, 100, 120, 201, and 210. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1489 Megan A. Martinez, Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016. FORMULA G.f.: 1 + Series_Reversion(x*A094373(-x)). - Gheorghe Coserea, Jul 11 2018 a(n) ~ c * d^n / (sqrt(Pi) * n^(3/2)), where d = 4.730576939379622099763633264641101585205420756515858657461873... is the greatest real root of the equation 4 - 12*d + 4*d^2 - 24*d^3 + 5*d^4 = 0 and c = 0.3916760466183576202289779130261876915536170330427700961416097... is the positive real root of the equation -5 - 64*c^2 - 33728*c^4 + 209664*c^6 + 93184*c^8 = 0. - Vaclav Kotesovec, Jul 12 2018 D-finite with recurrence: 45*n*(n-1)*a(n) -4*(n-1)*(49*n-66)*a(n-1) +2*(-25*n^2+157*n-264)*a(n-2) +2*(-70*n^2+445*n-714)*a(n-3) -4*(n-6)*(n-13)*a(n-4) -4*(n-6)*(2*n-17)*a(n-5) +8*(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, Feb 21 2020 EXAMPLE The length 3 inversion sequences avoiding (110, 210, 120, 201, 010) are 000, 001, 002, 011, 012. The length 4 inversion sequences avoiding (110, 210, 120, 201, 010) are 0000, 0001, 0002, 0003, 0011, 0012, 0013, 0021, 0022, 0023, 0111, 0112, 0113, 0122, 0123. MAPLE a:= proc(n) option remember; `if`(n<4, [1, 1, 2, 5][n+1],       ((12*(n-1))*(182*n^3-1659*n^2+4628*n-3756)*a(n-1)       -(4*(91*n^4-1057*n^3+3812*n^2-4046*n-906))*a(n-2)       +(6*(n-4))*(182*n^3-1659*n^2+4901*n-4630)*a(n-3)       -(4*(n-4))*(n-5)*(91*n^2-511*n+690)*a(n-4))        /(5*n*(n-1)*(91*n^2-693*n+1292)))     end: seq(a(n), n=0..30);  # Alois P. Heinz, Feb 22 2017 MATHEMATICA a[n_] := a[n] = If[n < 4, {1, 1, 2, 5}[[n + 1]], ((12*(n - 1))*(182*n^3 - 1659*n^2 + 4628*n - 3756)*a[n - 1] - (4*(91*n^4 - 1057*n^3 + 3812*n^2 - 4046*n - 906))*a[n - 2] + (6*(n - 4))*(182*n^3 - 1659*n^2 + 4901*n - 4630)*a[n - 3] - (4*(n - 4))*(n - 5)*(91*n^2 - 511*n + 690)*a[n - 4]) / (5*n*(n - 1)*(91*n^2 - 693*n + 1292))]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *) PROG (PARI) seq(N) = my(x='x+O('x^N)); Vec(1+serreverse((-x^3+x^2+x)/(2*x^2+3*x+1))); seq(27) \\ Gheorghe Coserea, Jul 11 2018 CROSSREFS Cf. A263777, A263778, A263779, A263780, A279551, A279552, A279554, A279555, A279556, A279557, A279558, A279559, A279560, A279561, A279562, A279563, A279564, A279565, A279566, A279567, A279568, A279569, A279570, A279571, A279572, A279573. Sequence in context: A149951 A157135 A196836 * A007853 A149952 A060049 Adjacent sequences:  A279550 A279551 A279552 * A279554 A279555 A279556 KEYWORD nonn AUTHOR Megan A. Martinez, Dec 15 2016 EXTENSIONS a(10)-a(16) from Lars Blomberg, Feb 02 2017 a(17)-a(26) from Alois P. Heinz, Feb 22 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 6 12:08 EDT 2020. Contains 333273 sequences. (Running on oeis4.)