OFFSET
0,3
COMMENTS
The Rogers-Ramanujan continued fraction is defined by R(q) = q^(1/5)/(1+q/(1+q^2/(1+q^3/(1+ ... )))). The limit of a(n)/A015460(n+2) is 3^(-1/5) * R(3).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..90
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
EXAMPLE
MATHEMATICA
RecurrenceTable[{a[n] == a[n - 1] + 3^n*a[n - 2], a[0] == 1, a[1] == 1}, a, {n, 15}] (* Michael De Vlieger, Dec 31 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 31 2016
STATUS
approved