login
A279466
T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
7
0, 0, 0, 2, 2, 2, 2, 6, 6, 2, 5, 20, 33, 20, 5, 8, 66, 180, 180, 66, 8, 15, 210, 1024, 1722, 1024, 210, 15, 26, 658, 5228, 15484, 15484, 5228, 658, 26, 46, 2036, 26670, 129914, 223261, 129914, 26670, 2036, 46, 80, 6236, 134438, 1079792, 3086910, 3086910
OFFSET
1,4
COMMENTS
Table starts
..0.....0.......2.........2...........5..............8...............15
..0.....2.......6........20..........66............210..............658
..2.....6......33.......180........1024...........5228............26670
..2....20.....180......1722.......15484.........129914..........1079792
..5....66....1024.....15484......223261........3086910.........41706415
..8...210....5228....129914.....3086910.......69493918.......1529974962
.15...658...26670...1079792....41706415.....1529974962......54755104784
.26..2036..134438...8845592...555052466....33126514762....1926654903560
.46..6236..670407..71540206..7290902341...707716447612...66854006751350
.80.18928.3310176.572555634.94741575142.14949807134092.2293311539588776
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>5
k=2: [order 10]
k=3: [order 36]
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..0. .0..1..0..0. .0..1..0..0. .0..1..0..0. .0..0..0..0
..1..0..1..0. .0..0..1..0. .1..1..1..1. .0..0..1..1. .1..1..1..1
..1..0..0..1. .1..0..1..1. .0..1..0..0. .1..0..1..0. .0..0..1..0
..1..1..0..0. .0..1..0..1. .1..0..1..0. .1..1..0..1. .0..1..0..1
CROSSREFS
Column 1 is A006367(n-1).
Sequence in context: A238413 A151704 A110023 * A116863 A136494 A260188
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 12 2016
STATUS
approved