login
A279461
Number of n X 3 0..1 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1
2, 6, 33, 180, 1024, 5228, 26670, 134438, 670407, 3310176, 16219930, 78973826, 382408399, 1842856150, 8843787665, 42284752666, 201514337962, 957534960784, 4537926120718, 21454758254236, 101215638872346, 476553258095432
OFFSET
1,1
COMMENTS
Column 3 of A279466.
LINKS
FORMULA
Empirical: a(n) = 10*a(n-1) -33*a(n-2) +58*a(n-3) -110*a(n-4) +76*a(n-5) -37*a(n-6) +46*a(n-7) +216*a(n-8) -90*a(n-9) +274*a(n-10) -480*a(n-11) -570*a(n-12) +82*a(n-13) -243*a(n-14) +666*a(n-15) +1279*a(n-16) +1154*a(n-17) -450*a(n-18) -3012*a(n-19) -1514*a(n-20) +298*a(n-21) -265*a(n-22) +2182*a(n-23) +4582*a(n-24) +864*a(n-25) -4441*a(n-26) -4314*a(n-27) -91*a(n-28) +2472*a(n-29) +1759*a(n-30) +214*a(n-31) -414*a(n-32) -306*a(n-33) -100*a(n-34) -16*a(n-35) -a(n-36).
EXAMPLE
Some solutions for n=4
..0..0..1. .0..1..0. .0..1..1. .0..1..0. .0..1..1. .0..0..1. .0..1..0
..1..1..0. .1..0..1. .0..1..0. .0..0..1. .1..0..1. .1..1..0. .0..1..1
..0..0..1. .1..0..0. .0..0..0. .1..0..1. .0..0..1. .1..0..1. .1..0..0
..0..1..0. .1..1..0. .1..1..1. .1..1..0. .1..0..1. .1..0..1. .1..1..0
CROSSREFS
Cf. A279466.
Sequence in context: A083126 A098960 A162429 * A243324 A018952 A019028
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 12 2016
STATUS
approved