This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279457 Numbers n such that number of distinct primes dividing n is odd and number of prime divisors (counted with multiplicity) of n is odd. 4

%I

%S 2,3,5,7,8,11,13,17,19,23,27,29,30,31,32,37,41,42,43,47,53,59,61,66,

%T 67,70,71,73,78,79,83,89,97,101,102,103,105,107,109,110,113,114,120,

%U 125,127,128,130,131,137,138,139,149,151,154,157,163,165,167,168,170,173,174,179,180,181,182,186,190,191,193,195,197,199,211

%N Numbers n such that number of distinct primes dividing n is odd and number of prime divisors (counted with multiplicity) of n is odd.

%C Intersection of A026424 and A030230.

%C Numbers n such that A000035(A001221(n)) = 1 and A000035(A001222(n)) = 1.

%C Numbers n such that A076479(n) = -1 and A008836(n) = -1.

%C All primes (A000040) are included in the sequence.

%H G. C. Greubel, <a href="/A279457/b279457.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeFactor.html">Prime Factor</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DistinctPrimeFactors.html">Distinct Prime Factors</a>

%e 27 is in the sequence because 27 = 3^3 therefore omega(27) = 1 {3} is odd and bigomega(27) = 3 {3,3,3} is odd.

%t Select[Range[220], Mod[PrimeNu[#1], 2] == Mod[PrimeOmega[#1], 2] == 1 & ]

%Y Cf. A000035, A000040, A001221, A001222, A008836, A076479, A026424, A030230, A279456, A279458.

%K nonn,easy

%O 1,1

%A _Ilya Gutkovskiy_, Dec 12 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 21:29 EDT 2019. Contains 323410 sequences. (Running on oeis4.)