OFFSET
1,3
COMMENTS
LINKS
Heinrich Ludwig, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (3,1,-11,6,14,-14,-6,11,-1,-3,1).
FORMULA
a(n) = (n^6 - 5*n^4 + 14*n^3 - 14*n^2 + 4*n)/48 + IF(MOD(n, 2) = 1, 2*n^3 - 3*n^2 + 1)/16.
a(n) = 3*a(n-1) + a(n-2) - 11*a(n-3) + 6*a(n-4) + 14*a(n-5) - 14*a(n-6) - 6*a(n-7) + 11*a(n-8) - a(n-9) - 3*a(n-10) + a(n-11).
G.f.: x^2*(1 + 11*x + 30*x^2 + 79*x^3 + 62*x^4 + 55*x^5 + 4*x^6 - x^7 - x^8) / ((1 - x)^7*(1 + x)^4). - Colin Barker, Dec 17 2016
MATHEMATICA
LinearRecurrence[{3, 1, -11, 6, 14, -14, -6, 11, -1, -3, 1}, {0, 1, 14, 73, 301, 890, 2321, 5166, 10654, 20055, 35880}, 35] (* Vincenzo Librandi Dec 17 2016 *)
PROG
(Magma) I:=[0, 1, 14, 73, 301, 890, 2321, 5166, 10654, 20055, 35880]; [n le 11 select I[n] else 3*Self(n-1)+Self(n-2)-11*Self(n-3)+ 6*Self(n-4)+14*Self(n-5)-14*Self(n-6)-6*Self(n-7)+11*Self(n-8)-Self(n-9)-3*Self(n-10)+Self(n-11): n in [1..40]]; // Vincenzo Librandi, Dec 17 2016
(PARI) concat(0, Vec(x^2*(1 + 11*x + 30*x^2 + 79*x^3 + 62*x^4 + 55*x^5 + 4*x^6 - x^7 - x^8) / ((1 - x)^7*(1 + x)^4) + O(x^30))) \\ Colin Barker, Dec 17 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Dec 17 2016
STATUS
approved