

A279404


Independent domination number for queens' graph on an n X n toroidal board.


3



1, 1, 1, 2, 5, 4, 5, 4, 5, 5, 5, 6, 7, 7, 5, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

That is, the minimal number of queens needed to cover an n X n toroidal chessboard so that every square either has a queen on it or is under attack by a queen, but not both.
A279402(n) <= a(n) <= A085801(n).


LINKS

Table of n, a(n) for n=1..16.
Christina M. Mynhardt, Upper bounds for the domination numbers of toroidal queens graphs, Discussiones Mathematicae Graph Theory, 23 (2003), 163175, DOI:10.7151/dmgt.1193.


FORMULA

a(3*n) = n if n = 1, 5, 7, 11 (mod 12).


CROSSREFS

Cf. A075324, A085801, A279402.
Sequence in context: A249018 A235052 A102066 * A072970 A276320 A011036
Adjacent sequences: A279401 A279402 A279403 * A279405 A279406 A279407


KEYWORD

nonn,hard,more


AUTHOR

Andrey Zabolotskiy, Dec 11 2016


STATUS

approved



