login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279368 Expansion of Product_{k>=1} (1+3*x^(k^2)). 4
1, 3, 0, 0, 3, 9, 0, 0, 0, 3, 9, 0, 0, 9, 27, 0, 3, 9, 0, 0, 9, 27, 0, 0, 0, 12, 36, 0, 0, 36, 108, 0, 0, 0, 9, 27, 3, 9, 27, 81, 9, 36, 27, 0, 0, 36, 108, 0, 0, 30, 117, 81, 9, 36, 108, 243, 27, 81, 9, 27, 0, 36, 135, 81, 3, 126, 351, 0, 9, 54, 108, 81, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In general, if m > 0 and g.f. = Product_{k>=1} (1 + m*x^(k^2)), then a(n) ~ exp(3 * 2^(-4/3) * Pi^(1/3) * c^(2/3) * n^(1/3)) * c^(1/3) / (2^(2/3) * Pi^(1/3) * sqrt(3*(m+1)) * n^(5/6)), where c = -PolyLog(3/2, -m). - Vaclav Kotesovec, Dec 12 2016

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000

FORMULA

a(n) ~ c^(1/3) * exp(3 * 2^(-4/3) * c^(2/3) * Pi^(1/3) * n^(1/3)) / (2^(5/3) * sqrt(3) * Pi^(1/3) * n^(5/6)), where c = -PolyLog(3/2, -3) = 1.679089730504828... . - Vaclav Kotesovec, Dec 12 2016

MATHEMATICA

nmax = 200; CoefficientList[Series[Product[(1+3*x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x]

nmax = 200; nn = Floor[Sqrt[nmax]]+1; poly = ConstantArray[0, nn^2 + 1]; poly[[1]] = 1; poly[[2]] = 3; poly[[3]] = 0; Do[Do[poly[[j + 1]] += 3*poly[[j - k^2 + 1]], {j, nn^2, k^2, -1}]; , {k, 2, nn}]; Take[poly, nmax+1]

CROSSREFS

Cf. A032308, A033461, A279360.

Sequence in context: A171793 A079201 A079209 * A021773 A244126 A133109

Adjacent sequences:  A279365 A279366 A279367 * A279369 A279370 A279371

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Dec 10 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 15:03 EDT 2019. Contains 328019 sequences. (Running on oeis4.)