login
A279358
Exponential transform of the cubes A000578.
7
1, 1, 9, 52, 413, 3916, 41077, 481384, 6198425, 86430160, 1296040841, 20763245944, 353272341061, 6353672109760, 120315348389069, 2390488408994536, 49682962883210033, 1077292416660660736, 24313317132393295633, 569937590287796925784, 13850459183086300341341
OFFSET
0,3
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Exponential Transform
Eric Weisstein's World of Mathematics, Cubic Number
FORMULA
E.g.f.: exp(exp(x)*(x+3*x^2+x^3)).
EXAMPLE
E.g.f.: A(x) = 1 + x/1! + 9*x^2/2! + 52*x^3/3! + 413*x^4/4! + 3916*x^5/5! + 41077*x^6/6! + ...
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1)*j^3*a(n-j), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 11 2016
MATHEMATICA
Range[0, 20]! CoefficientList[Series[Exp[Exp[x] (x + 3 x^2 + x^3)], {x, 0, 20}], x]
CROSSREFS
Column k=3 of A279636.
Sequence in context: A282179 A278000 A159598 * A344820 A156544 A094793
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 10 2016
STATUS
approved