login
A279328
Expansion of Product_{k>=1} (1 + x^(2*k)) / (1 - x^k).
3
1, 1, 3, 4, 8, 11, 20, 27, 44, 60, 92, 124, 183, 244, 348, 461, 640, 840, 1144, 1488, 1992, 2572, 3393, 4348, 5668, 7212, 9301, 11760, 15024, 18880, 23924, 29892, 37596, 46728, 58376, 72193, 89644, 110340, 136248, 166968, 205115, 250316, 306056, 372032, 452876
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{k>=1} (1 + x^(2*k)) / (1 - x^k).
a(n) ~ sqrt(5/6) * exp(sqrt(5*n/6)*Pi) / (8*n). - Vaclav Kotesovec, Dec 10 2016
EXAMPLE
G.f.: 1 + x + 3*x^2 + 4*x^3 + 8*x^4 + 11*x^5 + 20*x^6 + 27*x^7 + 44*x^8 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k)) / (1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 10 2016 *)
CROSSREFS
Cf. Product_{k>=1} (1 + x^(m*k)) / (1 - x^k): A015128 (m=1), this sequence (m=2), A266648 (m=3).
Sequence in context: A299069 A097497 A332681 * A006167 A137504 A173401
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 09 2016
STATUS
approved