login
A279327
T(n,k)=Number of nXk 0..2 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
6
0, 0, 0, 2, 0, 2, 4, 16, 16, 4, 14, 152, 664, 152, 14, 40, 1536, 16092, 16092, 1536, 40, 120, 13776, 384180, 1079496, 384180, 13776, 120, 352, 118664, 8854880, 73482624, 73482624, 8854880, 118664, 352, 1032, 991616, 198179722, 4808164964
OFFSET
1,4
COMMENTS
Table starts
....0........0...........2..............4..............14...............40
....0........0..........16............152............1536............13776
....2.......16.........664..........16092..........384180..........8854880
....4......152.......16092........1079496........73482624.......4808164964
...14.....1536......384180.......73482624.....14012963052....2584102824124
...40....13776.....8854880.....4808164964...2584102824124.1348916804333952
..120...118664...198179722...306703795184.466109368455794
..352...991616..4349449420.19222109104916
.1032..8109024.94030021118
.3008.65252928
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -8*a(n-3) -4*a(n-4) for n>5
k=2: [order 10]
k=3: [order 34] for n>35
EXAMPLE
Some solutions for n=3 k=4
..0..0..1..0. .0..1..2..0. .0..1..2..1. .0..1..0..1. .0..1..2..0
..0..1..2..1. .0..0..2..1. .2..2..0..0. .0..2..1..2. .1..2..0..0
..2..2..0..1. .2..1..1..2. .1..2..1..0. .1..0..1..1. .0..2..2..1
CROSSREFS
Sequence in context: A079550 A226430 A067648 * A052438 A324045 A358405
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 09 2016
STATUS
approved