login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279284 Self-composition of the pentagonal numbers; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A000326. 0
0, 1, 10, 74, 469, 2662, 14115, 71360, 348143, 1652200, 7669883, 34969286, 157060011, 696514465, 3055404733, 13277356490, 57222978070, 244831062184, 1040760406476, 4398642943496, 18493603597214, 77388169532299, 322451025667910, 1338291853544522, 5534486308363461, 22812231761335189, 93741611639348947, 384122032722040412 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..27.

N. J. A. Sloane, Transforms

Eric Weisstein's World of Mathematics, Pentagonal Number

Index to sequences related to polygonal numbers

Index entries for linear recurrences with constant coefficients, signature (12,-51,91,-75,66,-28,15,-3,1).

FORMULA

G.f.: x*(1 - x)^3*(1 + 2*x)*(1 - x + 7*x^2 - x^3)/(1 - 4*x + x^2 - x^3)^3.

a(n) = 12*a(n-1) - 51*a(n-2) + 91*a(n-3) - 75*a(n-4) + 66*a(n-5) - 28*a(n-6) + 15*a(n-7) - 3*a(n-8) + a(n-9).

MATHEMATICA

CoefficientList[Series[x (1 - x)^3 (1 + 2 x) (1 - x + 7 x^2 - x^3)/(1 - 4 x + x^2 - x^3)^3, {x, 0, 25}], x]

LinearRecurrence[{12, -51, 91, -75, 66, -28, 15, -3, 1}, {0, 1, 10, 74, 469, 2662, 14115, 71360, 348143}, 26]

CROSSREFS

Cf. A000326, A030279, A030280.

Sequence in context: A044197 A044578 A309884 * A264082 A103434 A119167

Adjacent sequences:  A279281 A279282 A279283 * A279285 A279286 A279287

KEYWORD

nonn,easy

AUTHOR

Ilya Gutkovskiy, Dec 09 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 02:56 EDT 2020. Contains 334613 sequences. (Running on oeis4.)