%I #10 Feb 16 2025 08:33:37
%S 0,1,16,182,1720,14149,106944,760463,5160488,33756514,214369376,
%T 1328496947,8065970016,48125315989,282851349184,1640791635086,
%U 9409099218712,53408767286521,300417148670400,1676056809217283,9282172245277448,51062759750186170,279196558362482192,1518068927980989575
%N Self-composition of the cubes; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A000578.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CubicNumber.html">Cubic Number</a>
%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (20,-158,640,-1553,2920,-4806,5700,-6820,5700,-4806,2920,-1553,640,-158,20,-1).
%F G.f.: x*(1 - x)^4*(1 + 4*x + x^2)*(1 - 4*x + 29*x^2 - 84*x^3 + 152*x^4 - 84*x^5 + 29*x^6 - 4*x^7 + x^8)/((1 + x^2)^4*(1 - 5*x + x^2)^4).
%t CoefficientList[Series[x (1 - x)^4 (1 + 4 x + x^2) (1 - 4 x + 29 x^2 - 84 x^3 + 152 x^4 - 84 x^5 + 29 x^6 - 4 x^7 + x^8)/((1 + x^2)^4 (1 - 5 x + x^2)^4), {x, 0, 23}], x]
%t LinearRecurrence[{20,-158,640,-1553,2920,-4806,5700,-6820,5700,-4806,2920,-1553,640,-158,20,-1},{0,1,16,182,1720,14149,106944,760463,5160488,33756514,214369376,1328496947,8065970016,48125315989,282851349184,1640791635086},30] (* _Harvey P. Dale_, Sep 27 2024 *)
%Y Cf. A000578, A030267, A030279.
%K nonn,easy,changed
%O 0,3
%A _Ilya Gutkovskiy_, Dec 09 2016