login
A279281
Expansion of Product_{k>=1} (1 + x^(k*(3*k-2))).
7
1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1
OFFSET
0,106
COMMENTS
Number of partitions of n into distinct octagonal numbers (A000567).
FORMULA
G.f.: Product_{k>=1} (1 + x^(k*(3*k-2))).
EXAMPLE
a(105) = 2 because we have [96, 8, 1] and [65, 40].
MATHEMATICA
nmax = 120; CoefficientList[Series[Product[1 + x^(k (3 k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 09 2016
STATUS
approved