This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279269 a(n) = floor( (4 + sqrt(11))^n ). 1
 1, 7, 53, 391, 2865, 20967, 153413, 1122471, 8212705, 60089287, 439650773, 3216759751, 23535824145, 172202794407, 1259943234533, 9218531904231, 67448539061185, 493495652968327, 3610722528440693, 26418301962683911, 193292803059267825, 1414250914660723047 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS All numbers are odd. LINKS Olimpiada Matemática Española, Si n es un número natural, demostrar que la parte entera de (4 + sqrt(11))^n es un número impar (in Spanish), Problem 26/3 (1990), page 26. Index entries for linear recurrences with constant coefficients, signature (9,-13,5). FORMULA O.g.f.: (1 - 2*x + 3*x^2)/((1 - x)*(1 - 8*x + 5*x^2)). - Ilya Gutkovskiy, Dec 13 2016 E.g.f.: exp((4 + sqrt(11))*x) + exp((4 - sqrt(11))*x) - exp(x). - Bruno Berselli, Dec 14 2016 a(n) = 9*a(n-1) - 13*a(n-2) + 5*a(n-3) for n>2. a(n) = 8*a(n-1) - 5*a(n-2) + 2 for n>1. a(n) = (4 + sqrt(11))^n + (4 - sqrt(11))^n - 1. - Bruno Berselli, Dec 13 2016 MATHEMATICA Floor[(4+Sqrt[11])^Range[0, 30]] (* or *) LinearRecurrence[{9, -13, 5}, {1, 7, 53}, 30] (* Harvey P. Dale, Apr 22 2019 *) CROSSREFS Sequence in context: A223778 A223712 A065542 * A015561 A133588 A163306 Adjacent sequences:  A279266 A279267 A279268 * A279270 A279271 A279272 KEYWORD nonn,easy AUTHOR Philippe Deléham, Dec 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 04:14 EST 2019. Contains 329784 sequences. (Running on oeis4.)