login
A279152
Number of n X 2 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1
0, 0, 4, 12, 30, 72, 162, 356, 766, 1616, 3378, 7004, 14406, 29480, 60090, 122036, 247150, 499456, 1007458, 2029068, 4081686, 8202456, 16469642, 33046628, 66271166, 132836784, 266160818, 533127612, 1067587174, 2137374088, 4278378970
OFFSET
1,3
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + 6*a(n-3) - 12*a(n-4) + 8*a(n-5) - 4*a(n-6) + 8*a(n-7).
Empirical g.f.: 2*x^3*(2 - 2*x + x^2 - 6*x^3) / ((1 - 2*x)*(1 - x - 2*x^3)^2). - Colin Barker, Feb 10 2019
EXAMPLE
Some solutions for n=4:
..0..1. .0..1. .0..1. .0..1. .0..0. .0..0. .0..0. .0..1. .0..0. .0..0
..1..1. .1..0. .0..1. .0..1. .1..1. .1..1. .1..1. .1..0. .1..1. .1..1
..0..0. .0..0. .1..1. .0..0. .1..0. .0..0. .0..1. .1..1. .0..1. .1..0
..1..1. .1..1. .0..0. .1..1. .0..1. .1..0. .1..0. .0..0. .0..1. .1..0
CROSSREFS
Column 2 of A279158.
Sequence in context: A068055 A221855 A258457 * A317780 A274217 A162740
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 06 2016
STATUS
approved