login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX4 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
1

%I #4 Dec 06 2016 18:58:33

%S 3,34,256,1324,6396,30074,129264,535814,2150797,8418336,32296969,

%T 121849424,453295302,1666387390,6063302940,21865526486,78234877789,

%U 277985152886,981636776095,3447186735368,12044802324840,41894649008470

%N Number of nX4 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

%C Column 4 of A279134.

%H R. H. Hardin, <a href="/A279130/b279130.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 16*a(n-1) -108*a(n-2) +401*a(n-3) -893*a(n-4) +1179*a(n-5) -600*a(n-6) -1173*a(n-7) +3468*a(n-8) -5018*a(n-9) +6446*a(n-10) -8766*a(n-11) +8587*a(n-12) -1891*a(n-13) -12870*a(n-14) +29298*a(n-15) -31377*a(n-16) +26556*a(n-17) -29210*a(n-18) +21407*a(n-19) +1380*a(n-20) -39341*a(n-21) +76349*a(n-22) -59868*a(n-23) +31048*a(n-24) -37732*a(n-25) +23625*a(n-26) +13127*a(n-27) -35339*a(n-28) +40641*a(n-29) -26406*a(n-30) +5772*a(n-31) +6474*a(n-32) -9682*a(n-33) +6694*a(n-34) -2802*a(n-35) +369*a(n-36) +540*a(n-37) -513*a(n-38) +299*a(n-39) -116*a(n-40) +36*a(n-41) -7*a(n-42) +a(n-43) for n>50

%e Some solutions for n=4

%e ..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..0..0. .0..1..0..1

%e ..0..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..1..1. .0..1..0..0

%e ..1..1..0..1. .1..0..1..0. .1..0..0..1. .1..0..0..0. .0..1..1..1

%e ..0..1..0..1. .0..1..1..1. .0..0..1..0. .0..0..1..0. .1..0..1..0

%Y Cf. A279134.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 06 2016