This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279094 Smallest k such that sigma(k^n) is prime. 5
 2, 2, 4, 2, 25, 2, 59049, 4, 4, 5, 256, 2, 282475249, 243, 4, 2, 729, 2, 1174562876521148458974062689, 8, 64, 16, 25, 1331, 594823321, 16807, 38950081, 151, 361, 2, 470541197898347534873984161, 19902511, 241081, 27, 9, 61, 625, 34271896307633, 73441, 53, 1681 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For any number k with two or more distinct prime divisors, the sum of divisors of k^n is composite, so each term is of the form p^j where p is prime and j >= 1, i.e., all terms are prime powers (A246655). Additionally, sigma(k^n) = sigma(p^(j*n)) = (p^(j*n + 1) - 1)/(p - 1) is composite when j*n + 1 is composite, so a(n) must be of the form p^j where j*n + 1 is prime. LINKS Jon E. Schoenfield, Table of n, a(n) for n = 1..200 EXAMPLE a(1) = 2 because sigma(1^1) = sigma(1) = 1 (not prime), but sigma(2^1) = sigma(2) = 1 + 2 = 3 (prime). a(3) = 4 because sigma(1^3) = 1 (not prime), sigma(2^3) = 1 + 2 + 4 + 8 = 15 (composite), sigma(3^3) = 1 + 3 + 9 + 27 = 40 (composite), but sigma(4^3) = sigma(2^6) = 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127 (prime). a(19) = 1174562876521148458974062689 = 17^22 because sigma((17^22)^19) is prime and sigma(k^19) is not prime for any smaller value of k. CROSSREFS Cf. A000203, A023194, A055638, A246655. Sequence in context: A227293 A102416 A227509 * A299148 A129243 A013551 Adjacent sequences:  A279091 A279092 A279093 * A279095 A279096 A279097 KEYWORD nonn AUTHOR Jon E. Schoenfield, Mar 11 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 08:20 EST 2019. Contains 329877 sequences. (Running on oeis4.)