

A279041


Expansion of Product_{k>=1} 1/(1  x^(k*(3*k2))).


2



1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 10, 10, 11, 11, 11, 12, 12, 12, 14, 14, 15, 15, 15, 16, 16, 16, 18, 18, 19, 19, 19, 21, 21, 22, 24, 25, 26, 26, 26, 28, 28, 29, 31, 32, 33, 33, 33, 35, 35, 36, 39, 40, 42, 42, 43, 45, 46, 47, 50, 51, 53
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,9


COMMENTS

Number of partitions of n into nonzero octagonal numbers (A000567).


LINKS

Table of n, a(n) for n=0..90.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226228 (1995), 5772; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226228 (1995), 5772; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Eric Weisstein's World of Mathematics, Octagonal Number
Index to sequences related to polygonal numbers
Index entries for related partitioncounting sequences


FORMULA

G.f.: Product_{k>=1} 1/(1  x^(k*(3*k2))).


EXAMPLE

a(9) = 2 because we have [8, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1].


MATHEMATICA

nmax=90; CoefficientList[Series[Product[1/(1  x^(k (3 k  2))), {k, 1, nmax}], {x, 0, nmax}], x]


CROSSREFS

Cf. A000567, A001156, A007294, A037444, A218379, A278949, A279012.
Sequence in context: A214956 A209899 A111898 * A072746 A179528 A105390
Adjacent sequences: A279038 A279039 A279040 * A279042 A279043 A279044


KEYWORD

nonn,easy


AUTHOR

Ilya Gutkovskiy, Dec 04 2016


STATUS

approved



