login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279041 Expansion of Product_{k>=1} 1/(1 - x^(k*(3*k-2))). 2
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 10, 10, 11, 11, 11, 12, 12, 12, 14, 14, 15, 15, 15, 16, 16, 16, 18, 18, 19, 19, 19, 21, 21, 22, 24, 25, 26, 26, 26, 28, 28, 29, 31, 32, 33, 33, 33, 35, 35, 36, 39, 40, 42, 42, 43, 45, 46, 47, 50, 51, 53 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

Number of partitions of n into nonzero octagonal numbers (A000567).

LINKS

Table of n, a(n) for n=0..90.

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

Eric Weisstein's World of Mathematics, Octagonal Number

Index to sequences related to polygonal numbers

Index entries for related partition-counting sequences

FORMULA

G.f.: Product_{k>=1} 1/(1 - x^(k*(3*k-2))).

EXAMPLE

a(9) = 2 because we have [8, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1].

MATHEMATICA

nmax=90; CoefficientList[Series[Product[1/(1 - x^(k (3 k - 2))), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A000567, A001156, A007294, A037444, A218379, A278949, A279012.

Sequence in context: A214956 A209899 A111898 * A072746 A179528 A105390

Adjacent sequences:  A279038 A279039 A279040 * A279042 A279043 A279044

KEYWORD

nonn,easy

AUTHOR

Ilya Gutkovskiy, Dec 04 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 15:00 EST 2018. Contains 317208 sequences. (Running on oeis4.)