login
A278981
a(n) is the first composite number having the same base-n digits as its prime factors (with multiplicity), excluding zero digits (or 0 if no such composite number exists).
6
15, 399, 85, 318, 57, 906, 85, 1670, 1111, 18193, 185, 7205205, 4119, 63791, 4369, 1548502, 489, 258099, 451, 408166, 13315, 1012985, 679, 25841526, 26533, 2884373, 985, 49101338, 1057, 5362755, 1285, 2447558, 179503, 3091422, 1387, 5830693854, 82311, 149338, 2005
OFFSET
2,1
COMMENTS
For an alternate program that only checks a single base at a time, use the code from "#the actual function (alternate)" instead of "#the actual function".
The computation of a(n) is exceedingly inefficient, requiring the checking of all natural values less than a(n). A more efficient way to compute a(n) is very desirable. - Ely Golden, Dec 25 2016
There is a lower bound on a(n), if not 0, of n^2 + n + 1. As well, a(n) must have 3 or more nonzero digits in base n (if n is odd, this lower bound is n^3 + n^2 + n + 1, and a(n) must have 4 or more nonzero digits in base n). This does not significantly improve the computation of a(n), however. - Ely Golden, Dec 30 2016
The pattern in the magnitude of a(n) is unclear. For some values of n, a(n) is much larger than for other values. For example, a(65) is 2460678262, whereas a(64) is only 4369 and a(66) is 4577. It seems as though even values of n typically have smaller values of a(n). - Ely Golden, Dec 30 2016
It is known that a(n) > 0 for any nonzero member of this sequence, as well as any n >= 2 of the form A280270(m), A070689(m), A279480(m), 2*A089001(m), 2*A115104(m), and 2*A280273(m)-1. It is likely, but not known, that a(n) > 0 for all n >= 2. - Ely Golden, Dec 30 2016
LINKS
Ely Golden, Table of n, a(n) for n = 2..72 (terms a(67), a(69), and a(71) computed by Chai Wah Wu)
Ely Golden, Table of n, a(n) for n = 2..11584 (a-file, contains every value of a(n) <= 2^27)
EXAMPLE
a(2) = 15, as 15 is the first composite number whose base-2 nonzero digits (1111) are the same as the base-2 nonzero digits of its prime factors (11_2 and 101_2).
MATHEMATICA
g[n_] := g[n] = Flatten[ Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]];
f[b_] := Block[{c = b^2}, While[ PrimeQ@ c || DeleteCases[ Sort[ IntegerDigits[c, b]], 0] != DeleteCases[ Sort[ Flatten[ IntegerDigits[g[c], b]]], 0], c++]; c]; Array[f, 39, 2] (* Robert G. Wilson v, Dec 30 2016 *)
PROG
(SageMath)
def nonZeroDigits(x, n):
if(x<=0|n<2):
return []
li=[]
while(x>0):
d=divmod(x, n)
if(d[1]!=0):
li.append(d[1])
x=d[0]
li.sort()
return li;
def nonZeroFactorDigits(x, n):
if(x<=0|n<2):
return []
li=[]
f=list(factor(x))
#ensures inequality of nonZeroFactorDigits(x, n) and nonZeroDigits(x, n) if x is prime
if((len(f)==1)&(f[0][1]==1)):
return [];
for c in range(len(f)):
for d in range(f[c][1]):
ld=nonZeroDigits(f[c][0], n)
li+=ld
li.sort()
return li;
#the actual function
def a(n):
c=2
while(nonZeroFactorDigits(c, n)!=nonZeroDigits(c, n)):
c+=1;
return c;
index=2
while(index<=100):
print(str(index)+" "+str(a(index)))
index+=1
print("complete")
#the actual function (alternate)
def a(n):
c=2
while(nonZeroFactorDigits(c, n)!=nonZeroDigits(c, n)):
c+=1;
if(c%1000000==1):
print("checked up to "+str(c-1))
return c;
x=3 # <some base you want to check>
print(str(x)+" "+str(a(x)))
print("complete")
CROSSREFS
a(10) = A176670(1); a(2) = A278909(1).
Sequence in context: A250950 A366300 A323838 * A279133 A034675 A216343
KEYWORD
nonn,base
AUTHOR
Ely Golden, Dec 02 2016
STATUS
approved