login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278949 Expansion of Product_{k>=1} 1/(1 - x^(k*(2*k-1))). 7
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 9, 9, 11, 11, 11, 12, 13, 13, 15, 15, 15, 16, 17, 17, 19, 20, 20, 23, 24, 24, 26, 27, 27, 30, 31, 31, 33, 34, 35, 38, 40, 40, 44, 45, 46, 49, 51, 51, 56, 57, 58, 61, 63, 64, 69, 72, 73, 78, 80, 81, 86, 89, 90, 96, 98, 99, 105, 108, 110, 116, 120, 121, 130 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

Number of partitions of n into nonzero hexagonal numbers (A000384).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..20000

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

Eric Weisstein's World of Mathematics, Hexagonal Number

Index to sequences related to polygonal numbers

Index entries for related partition-counting sequences

FORMULA

G.f.: Product_{k>=1} 1/(1 - x^(k*(2*k-1))).

EXAMPLE

a(7) = 2 because we have [6, 1] and [1, 1, 1, 1, 1, 1, 1].

MAPLE

h:= proc(n) option remember; `if`(n<1, 0, (t->

      `if`(t*(2*t-1)>n, t-1, t))(1+h(n-1)))

    end:

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

      b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(i*(2*i-1))))

    end:

a:= n-> b(n, h(n)):

seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2018

MATHEMATICA

nmax=90; CoefficientList[Series[Product[1/(1 - x^(k (2 k - 1))), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A000384, A001156, A007294, A037444, A218379.

Sequence in context: A186444 A072748 A174631 * A030603 A092670 A210528

Adjacent sequences:  A278946 A278947 A278948 * A278950 A278951 A278952

KEYWORD

nonn,easy

AUTHOR

Ilya Gutkovskiy, Dec 02 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 21:53 EDT 2020. Contains 336213 sequences. (Running on oeis4.)