%I #15 Dec 02 2016 05:54:27
%S 1,3,29,303,3501,42663,538769,6977547,92078989,1232902023,16700233689,
%T 228356672547,3147087003201,43659275921667,609117615688149,
%U 8539863624592023,120242239301247309,1699411957967345127,24098616839012623769,342754384909199620803
%N a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*binomial(2*k,k)^2.
%H Seiichi Manyama, <a href="/A278934/b278934.txt">Table of n, a(n) for n = 0..853</a>
%F Recurrence: n^2*a(n) = (13*n^2 - 13*n + 3)*a(n-1) + 29*(n-1)^2*a(n-2) + 15*(n-2)*(n-1)*a(n-3). - _Vaclav Kotesovec_, Dec 02 2016
%F a(n) ~ 15^(n+1) / (16*Pi*n). - _Vaclav Kotesovec_, Dec 02 2016
%t Table[Sum[(-1)^(n-k)*Binomial[n,k]*Binomial[2*k,k]^2, {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Dec 02 2016 *)
%t Table[(-1)^n*HypergeometricPFQ[{1/2, 1/2, -n}, {1, 1}, 16], {n, 0, 20}] (* _Vaclav Kotesovec_, Dec 02 2016 *)
%Y Cf. A248586.
%Y Cf. Sum_{k = 0..n} (-1)^(n-k)*binomial(n, k)*binomial(2*k, k)^m: A002426 (m=1), this sequence (m=2), A276537 (m=3).
%K nonn
%O 0,2
%A _Seiichi Manyama_, Dec 02 2016