%I #10 Dec 24 2018 02:48:55
%S 1,2,353,561608,4341274884,111107400842568,7493918659070379300,
%T 1139021252689549522419840,348457223545199873458486125120,
%U 196982631587037086047232203674775680,192443334239172066295878807351087122210880,307899710379447999264505625949360598523097530880
%N a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^4 + j^4.
%H Vaclav Kotesovec, <a href="/A278926/b278926.txt">Table of n, a(n) for n = 0..36</a>
%F a(n) ~ c * d^n * n!^5 / n^2, where d = 11.83108... and c = 0.68284...
%p with(LinearAlgebra):
%p a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^4+j^4))):
%p seq(a(n), n=0..16);
%t Flatten[{1, Table[Permanent[Table[i^4+j^4, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
%o (PARI) {a(n) = matpermanent(matrix(n, n, i, j, i^4+j^4))}
%o for(n=0, 20, print1(a(n), ", ")) \\ _Vaclav Kotesovec_, Dec 21 2018
%Y Cf. A204249, A278847, A278925.
%K nonn
%O 0,2
%A _Vaclav Kotesovec_, Dec 01 2016