login
A278910
Triangle of order m: C(n,k) = k*(n-k+1)^(k+m)+n-k, 0 <= k <= n, m = 0, read by rows.
2
0, 1, 1, 2, 3, 2, 3, 5, 9, 3, 4, 7, 20, 25, 4, 5, 9, 35, 83, 65, 5, 6, 11, 54, 195, 326, 161, 6, 7, 13, 77, 379, 1027, 1217, 385, 7, 8, 15, 104, 653, 2504, 5123, 4376, 897, 8, 9, 17, 135, 1035, 5189, 15629, 24579, 15311, 2049, 9, 10, 19, 170, 1543, 9610, 38885, 93754, 114691, 52490, 4609, 10
OFFSET
0,4
EXAMPLE
As an infinite triangular array:
0
1 1
2 3 2
3 5 9 3
4 7 20 25 4
5 9 35 83 65 5
As an infinite square array (matrix):
0 1 2 3 4 5
1 3 9 25 65 161
2 5 20 83 326 1217
3 7 35 195 1027 5123
4 9 54 379 2504 15629
5 11 77 653 5189 38885
MAPLE
A278910 := proc(n, k)
k*(n-k+1)^k+n-k ;
end proc:
seq(seq(A278910(n, k), k=0..n), n=0..10) ; # R. J. Mathar, Dec 02 2016
PROG
(Magma) /* As triangle */ [[k*(n-k+1)^k+n-k: k in [0..n]]: n in [0..10]];
CROSSREFS
Cf. A002064.
Cf. Triangles of order m: A003056 (m = -k), A059036 (m = 1-k).
Sequence in context: A251104 A199334 A330903 * A337982 A235669 A118088
KEYWORD
nonn,tabl,easy
AUTHOR
STATUS
approved