login
A278759
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 73", based on the 5-celled von Neumann neighborhood.
4
1, 0, 3, 10, 0, 63, 0, 255, 0, 1023, 0, 4095, 0, 16383, 0, 65535, 0, 262143, 0, 1048575, 0, 4194303, 0, 16777215, 0, 67108863, 0, 268435455, 0, 1073741823, 0, 4294967295, 0, 17179869183, 0, 68719476735, 0, 274877906943, 0, 1099511627775, 0, 4398046511103, 0
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Chai Wah Wu, Jun 14 2020: (Start)
a(n) = 5*a(n-2) - 4*a(n-4) for n > 7.
G.f.: (-20*x^7 + 12*x^6 + 13*x^5 - 11*x^4 + 10*x^3 - 2*x^2 + 1)/(4*x^4 - 5*x^2 + 1). (End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=73; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]][[i]], Range[1, i]], 2], {i, 1, stages-1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Nov 27 2016
STATUS
approved