login
E.g.f. C(x) is defined by: C(x) = 2 + Integral A(x)*B(x)^2 - A(x)^2*B(x) dx, where A(x) and B(x) are described by A278746 and A278747, respectively.
5

%I #11 Jan 04 2017 22:45:46

%S 2,0,2,-8,-90,520,-566,50904,396710,-18390200,131511978,-3005766632,

%T 33380803270,1757150970120,-44857682845174,950900072932696,

%U -28165020555314970,-73025855982929720,24480067437941915242,-834839712703258127208,34458996334508149067270,-773502135061735864720760,-12427737319809527785823286,1295375801958445816867049944,-74746823183505251943756410330,3392808342679593497307739258440

%N E.g.f. C(x) is defined by: C(x) = 2 + Integral A(x)*B(x)^2 - A(x)^2*B(x) dx, where A(x) and B(x) are described by A278746 and A278747, respectively.

%F Given e.g.f. C(x), functions A = A(x), B = B(x), and C = C(x) satisfy:

%F (1) A^2 + B^2 + C^2 = 5,

%F (2) A^3 + B^3 + C^3 = 9.

%F (3) A^4 + B^4 + C^4 = (A'^2 + B'^2 + C'^2 + 81)/5.

%F In vector form, functions A, B, and C may be defined by

%F (4) [A,B,C] = [0,1,2] + Integral [A,B,C] X [A^2,B^2,C^2] dx.

%F Specifically,

%F (4.a) A = Integral B*C^2 - B^2*C dx,

%F (4.b) B = 1 + Integral C*A^2 - C^2*A dx,

%F (4.c) C = 2 + Integral A*B^2 - A^2*B dx.

%e E.g.f.: C(x) = 2 + 2*x^2/2! - 8*x^3/3! - 90*x^4/4! + 520*x^5/5! - 566*x^6/6! + 50904*x^7/7! + 396710*x^8/8! - 18390200*x^9/9! + 131511978*x^10/10! - 3005766632*x^11/11! + 33380803270*x^12/12! + 1757150970120*x^13/13! - 44857682845174*x^14/14! + 950900072932696*x^15/15! +...

%e such that C(x) = 2 + Integral A(x)*B(x)^2 - A(x)^2*B(x) dx, and A(x) and B(x) begin as follows.

%e A(x) = 2*x + 6*x^3/3! - 24*x^4/4! - 1206*x^5/5! + 8280*x^6/6! - 52858*x^7/7! + 938952*x^8/8! + 6413418*x^9/9! - 322109160*x^10/10! + 4068033894*x^11/11! - 98801788536*x^12/12! + 1090129290506*x^13/13! + 34232660705880*x^14/14! - 1166338051942842*x^15/15! +...

%e B(x) = 1 - 8*x^2/2! + 16*x^3/3! - 72*x^4/4! + 640*x^5/5! + 6104*x^6/6! - 111888*x^7/7! + 1030936*x^8/8! - 20710880*x^9/9! + 100278648*x^10/10! + 4259777104*x^11/11! - 94939798408*x^12/12! + 2751909451200*x^13/13! - 58236639534824*x^14/14! - 39216365862992*x^15/15! +...

%e These series satisfy:

%e (1) A(x)^2 + B(x)^2 + C(x)^2 = 5,

%e (2) A(x)^3 + B(x)^3 + C(x)^3 = 9.

%o (PARI) {a(n) = my(A=x,B=1,C=2); for(i=1,n,

%o A = intformal(B*C^2 - B^2*C +x*O(x^n));

%o B = 1 + intformal(C*A^2 - C^2*A);

%o C = 2 + intformal(A*B^2 - A^2*B);); n!*polcoeff(C,n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A278746, A278747.

%K sign

%O 0,1

%A _Paul D. Hanna_, Dec 19 2016